Inference for Logistic Regression EPI 204 Quantitative Epidemiology III Statistical Models

Evans County, GA Dataset (1963)

- Data are in evans.dat (text, no header), evans.sas7bdat (SAS version 9 dataset), evans.sav (SPSS dataset), and evans.dta (Stata dataset) on the website given in the syllabus.
- The data are from a cohort study in which 609 white males were followed for 7 years, with coronary heart disease as the outcome of interest.
- The variables are given on the next slide

Input for Evans.dat (tab delimited)

read.table, read.csv, etc. are all variants that can handle text file input with different defaults.

By default, reads strings as factors, unless stringsAsFactors=F. Often this option is a good idea.

Variable	Description
ID	Subject ID, one observation per subject
CHD	Coronary heart disease (1) or not (0)
САТ	High catecholamine level (1) or not (0)
AGE	Age in years
CHL	Cholesterol level (mg/dL)
SMK	Ever smoked (1) or never smoked (0)
ECG	ECG abnormality (1) or not (0)
DBP	Diastolic blood pressure (mm)
SBP	Systolic blood pressure (mm)
HPT	= 1 if DBP \ge 90 or SBP \ge 160, otherwise = 0
СН	CAT*HPT
CC	CAT*CHL

> vars <- c("ID","CHD","CAT","AGE","CHL","SMK","ECG","DBP","SBP","HPT","CH","CC")
> evans <- read.table("evans.dat",header=F,col.names=vars)</pre>

> summary(evans)

ID	CHD	CAT	AGE	CHL
Min. : 21	Min. :0.0000	Min. :0.0000	Min. :40.00	Min. : 94.0
1st Qu.: 4242	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:46.00	1st Qu.:184.0
Median : 9751	Median :0.0000	Median :0.0000	Median :52.00	Median :209.0
Mean : 9213	Mean :0.1166	Mean :0.2003	Mean :53.71	Mean :211.7
3rd Qu.:13941	3rd Qu.:0.0000	3rd Qu.:0.0000	3rd Qu.:60.00	3rd Qu.:234.0
Max. :19161	Max. :1.0000	Max. :1.0000	Max. :76.00	Max. :357.0
SMK	ECG	DBP	SBP	
Min. :0.0000	Min. :0.0000	Min. : 60.00	Min. : 92.0	
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.: 80.00	1st Qu.:125.0	
Median :1.0000	Median :0.0000	Median : 90.00	Median :140.0	
Mean :0.6355	Mean :0.2726	Mean : 91.18	Mean :145.5	
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:100.00	3rd Qu.:160.0	
Max. :1.0000	Max. :1.0000	Max. :170.00	Max. :300.0	

HPT		CH		CC		
Min.	:0.0000	Min.	:0.0000	Min.	:	0.00
lst Qu.	:0.0000	lst Qu.	:0.0000	lst Qu.	:	0.00
Median	:0.0000	Median	:0.0000	Median	:	0.00
Mean	:0.4187	Mean	:0.1609	Mean	:	39.96
3rd Qu.	:1.0000	3rd Qu.	:0.0000	3rd Qu.	:	0.00
Max.	:1.0000	Max.	:1.0000	Max.	:3	31.00

(one of many possible exploratory plots)

```
> plot(SBP ~ AGE, data=evans) #Systolic Blood Pressure vs. Age
> abline(coef(lm(SBP~AGE,data=evans)),lwd=2) #Puts regression line on the plot
> abline(h=140,col="blue",lwd=2) #line at current hypertension threshold
> abline(h=160,col="red",lwd=2) #line at hypertension threshold used in study
> title("Systolic Blood Pressure by Age")
```

EPI 204 Quantitative Epidemiology III

Systolic Blood Pressure by Age

EPI 204 Quantitative Epidemiology III

7

> summary(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))

Coefficients:

	Estimate S	td. Error z	value	Pr(> z)	
(Intercept)	-6.680112	1.136363	-5.879	4.14e-09	* * *
CAT	0.715810	0.340180	2.104	0.03536	*
AGE	0.032770	0.015197	2.156	0.03105	*
CHL	0.008608	0.003259	2.641	0.00827	* *
SMK	0.802906	0.303001	2.650	0.00805	* *
HPT	0.476272	0.289296	1.646	0.09970	•
Signif. code	s: 0 `***'	0.001 `**′	0.01	*′ 0.05	.' 0.1 `

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.56 on 608 degrees of freedom Residual deviance: 401.95 on 603 degrees of freedom AIC: 413.95

Number of Fisher Scoring iterations: 5

April 13, 2017

EPI 204 Quantitative Epidemiology III

1

> drop1(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans),test="Chisq")
Single term deletions

Model:

CHD ~ C	AT +	+ AGE + C	CHL + SN	IK + HPJ	ſ			
	Df I	Deviance	AIC	LRT	Pr(>Chi)			
<none></none>		401.95	413.95					
CAT	1	406.33	416.33	4.3805	0.036353	*		
AGE	1	406.52	416.52	4.5682	0.032571	*		
CHL	1	408.86	418.86	6.9088	0.008577	* *		
SMK	1	409.65	419.65	7.6990	0.005525	* *		
HPT	1	404.66	414.66	2.7097	0.099741	•		
Signif.	cod	des: 0 '	***' 0.	.001 `**	*′ 0.01 `*	· · 0.05 · . · ().1 ` ′ 1	

HPT is not statistically significant, but omitting it causes a rise in the AIC, so some might keep it in the model.

Likelihood Ratio Test

- This is used to compare two statistical models that are *nested*, meaning that one (the *full model*) has all the terms of the other (the *reduced model*) plus one or more additional ones.
- For example, the full model might have CHD~CAT+AGE+CHL+SMK+HPT
- And the reduced model might have CHD~CAT+AGE+CHL+SMK (removing HPT) or CHD~CAT+CHL+SMK (removing AGE and HPT)

Likelihood Ratio Test

- If the full model has likelihood L_F and the reduced model has likelihood L_R, then statistical theory says that -2ln(L_R/L_F) = -2[ln(L_R) ln(L_F)] has approximately a chi-squared distribution with df = the number of omitted variables (with categorical variables counting as one less than the number of categories).
- Since $D = -2(LL LL_o)$, where LL_o is the log likelihood of the maximal model, we can equally use $D_R D_F$.

•
$$D_R - D_F = -2(LL_R - LL_o) - [-2(LL_F - LL_o)]$$

= $-2[ln(L_R) - ln(L_F)]$

> deviance(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))

[1] 401.947

> deviance(glm(CHD~CAT+AGE+CHL+SMK,family=binomial,data=evans))

[1] 404.6566

> deviance(glm(CHD~CAT+CHL+SMK,family=binomial,data=evans))

[1] 409.3424

Test for omitting HPT from full model uses 404.6566 - 401.947 = 2.7096. Compare to chi-squared on 1df

> 1-pchisq(2.7096,1)
[1] 0.099746

(same as produced with drop1)

> deviance(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))

[1] 401.947

> deviance(glm(CHD~CAT+AGE+CHL+SMK,family=binomial,data=evans))

[1] 404.6566

> deviance(glm(CHD~CAT+CHL+SMK,family=binomial,data=evans))

[1] 409.3424

Test for omitting both HPT and AGE from full model uses 409.3424 - 401.947 =
7.3954
Compared to a chi-squared on 2df
> 1-pchisq(7.3954,2)
[1] 0.02478046

> anova(glm(CHD~CAT+CHL+SMK,family=binomial,data=evans), glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans),test="Chisq") Analysis of Deviance Table

Model 1: CHD ~ CAT + CHL + SMK
Model 2: CHD ~ CAT + AGE + CHL + SMK + HPT
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 605 409.34
2 603 401.95 2 7.3955 0.02478 *

EPI 204 Quantitative Epidemiology III

Interaction Terms

- We almost always observe a principle of hierarchy of models.
- If an interaction term such as CAT*HPT is in the model, then the main effects CAT and HPT are also in the model. If a three-way interaction such as CAT*CHL*HPT is in the model, then so are all three two way interactions CAT*CHL, CAT*HPT, and CHL*HPT as well as the three main effects.
- R will observe this in drop1() as long as the interactions are explicitly stated (CAT*CHL and not CC which has the same value).

> summary(glm(CHD~CAT+CHL+SMK+HPT+CAT*CHL+CAT*HPT,binomial,data=evans))

Coefficients:

	Εs	stimate	Std.	Error	z value	Pr(> z)			
(Intercep	ot) −2	.132296	0.9	913911	-2.333	0.0196	40 *			
CAT	-12	.719878	3.2	138573	-4.053	5.06e-	05 **	*		
CHL	-0	.005312	0.0	004166	-1.275	0.2022	48		#Don't	omit
SMK	0	.698997	0.3	324996	2.151	0.0314	93 *			
HPT	1	.105883	0.3	328508	3.366	0.0007	62 **	*		
CAT:CHL	0	.071175	0.0	014494	4.911	9.07e-	07 **	*		
CAT:HPT	-2	.221010	0.5	730937	-3.039	0.0023	77 **			
Signif. c	codes:	0 `***′	0.00)1 `**	′ 0.01 `	*′ 0.05	`.′	0.1 ''	1	

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.56 on 608 degrees of freedom Residual deviance: 352.92 on 602 degrees of freedom AIC: 366.92

Number of Fisher Scoring iterations: 6

April 13, 2017

EPI 204 Quantitative Epidemiology III

> drop1(glm(CHD~CAT+CHL+SMK+HPT+CAT*CHL+CAT*HPT,binomial,data=evans))
Single term deletions

Model:

CHD ~ CAT + CHL + SMK + HPT + CAT * CHL + CAT * HPT

	Df	Deviance	AIC
<none></none>		352.92	366.92
SMK	1	357.93	369.93
CAT:CHL	1	399.88	411.88
CAT:HPT	1	362.06	374.06

Can't drop CAT, CHL, or HPT.

Interaction Terms

- Other than the hierarchical model for interactions, we can compare any two nested models.
- If we want to omit CHL, we also have to omit CAT*CHL, and we have a 2df comparison.
- CHL is quantitative, CAT*CHL is o whenever CAT = 0, and is equal to CHL when CAT = 1.
- Inclusion of the interaction means that the effect of high catecholamines is different (greater) when cholesterol is high.
- It also means that the effect of cholesterol is different (greater) when catecholamines are high.